THERMAL INTEGRATION OF CO₂ COMPRESSION HEAT TO IMPROVE POWER PLANT HEAT RATE

Edward Levy, Joshua Charles, Gordon Jonas,
Elaine Aiken and Erony Martin
Energy Research Center
Lehigh University
Bethlehem, PA

2011 NETL CO2 Capture Technology Meeting

CO2 COMPRESSION

- Compress from suction pressure of 14.7 to 300 psia to a discharge pressure greater than 2200 psia
- CO₂ flow rates ~ 1 million lbm/hr
- Will add parasitic load and reduce unit efficiency
- Opportunities for thermal integration innovations

INLINE COMPRESSOR

INLINE AND INTEGRALLY GEARED COMPRESSORS

RAMGEN COMPRESSOR

Ramgen Discrete Drive HP Stage

INTERCOOLING NEEDED BETWEEN STAGES

TYPICAL STAGE PRESSURE RATIOS

• Inline 2 to 6

Integrally Geared 1.5 to 2.5

• RAMGEN 10

EFFECTS OF STAGE EFFICIENCY AND NUMBER OF STAGES: OXYCOMBUSTION

POWER PLANT SIMULATIONS

 Used ASPEN Plus to model a 600 MW supercritical pulverized coal steam power plant firing PRB coal

 Developed separate models for MEA, chilled ammonia and oxycombustion capture systems

Included compressors and coolers into models

FEEDWATER HEATER INTEGRATION

STRIPPER REBOILER

MEA SCRUBBER, PRB COAL, INLINE COMPRESSOR

Thermal Integration Cases	Δ HR (%)
Compressor Heat to FWH3, FWH2 and FWH1	-2.32
Compressor Heat to FWH5	-3.03
Compressor Heat to Coal Dryer	-3.84
Stripper Condenser to Coal Dryer	-3.85
Compressor Heat to Reboiler	-2.42
Stripper Condenser to FWH3, FWH2, and FWH1	-3.76
Stripper Condenser to FWH3, FWH2, and FWH1 Compressor Heat to Reboiler	-5.99
Condenser to FWH3,2,1 Compressor Heat to FWH4,5	-6.27

OXYFIRING, PRB COAL, INLINE COMPRESSOR

Thermal Integration Cases	Δ HR
Recirculated Flue Gas Heating	-0.83%
Coal Drying	-3.72%
Replace FWH 1 Extraction	-1.02%
Replace FWH 2 Extraction	-1.24%
Replace FWH 3 Extraction	-1.36%
Replace FWH 1 & 2 Extraction	-2.25%
Recirc. Heating, Coal Drying & Replace FWH 1 Extraction	-5.37%
Recirc. Heating, Coal Drying & Replace FWH 2 Extraction	-5.63%
Recirc. Heating, Coal Drying & Replace FWH 3 Extraction	-5.81%

SUMMARY/CONCLUSIONS

PRB COAL AND INLINE COMPRESSOR:

 Oxy-fired Unit: Thermal Integration of Compressor Heat

Delta Heat Rate up to 5.8 %

- MEA Capture System: Thermal Integration of Compressor Heat & Stripper Condenser Heat
 - □ Delta Heat Rate Up To 6.3 %

NEXT STEPS

- Compare Types of Compressors
- Perform Analyses for Lignite and Bituminous Coals
- Comparative Analysis of Different Capture Systems and Differences Between Integration Strategies

ACKNOWLEDGEMENTS

This conference poster was prepared with the support of the U.S. Department of Energy, under Award No. DE-FE0002146. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the DOE.